ansible/roles/apps-fp-o/files/fedmenu/js/fedora-libravatar.js
2015-04-23 19:28:28 +00:00

148 lines
6.4 KiB
JavaScript
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -*/
/* Libravatar retrieval for Fedora FAS usernames */
/* (c) Ralph Bean 2015 / MIT License */
/* Original SHA-256 implementation in JavaScript */
/* (c) Chris Veness 2002-2014 / MIT Licence */
/* */
/* - see http://csrc.nist.gov/groups/ST/toolkit/secure_hashing.html */
/* http://csrc.nist.gov/groups/ST/toolkit/examples.html */
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -*/
'use strict';
var sha256 = {};
var libravatar = {};
/**
* Generates SHA-256 hash of string.
*
* @param {string} msg - String to be hashed
* @returns {string} Hash of msg as hex character string
*/
sha256.hash = function(msg) {
// convert string to UTF-8, as SHA only deals with byte-streams
msg = msg.utf8Encode();
// constants [§4.2.2]
var K = [
0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5,
0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174,
0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc, 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967,
0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13, 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85,
0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3, 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3,
0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2 ];
// initial hash value [§5.3.1]
var H = [
0x6a09e667, 0xbb67ae85, 0x3c6ef372, 0xa54ff53a, 0x510e527f, 0x9b05688c, 0x1f83d9ab, 0x5be0cd19 ];
// PREPROCESSING
msg += String.fromCharCode(0x80); // add trailing '1' bit (+ 0's padding) to string [§5.1.1]
// convert string msg into 512-bit/16-integer blocks arrays of ints [§5.2.1]
var l = msg.length/4 + 2; // length (in 32-bit integers) of msg + 1 + appended length
var N = Math.ceil(l/16); // number of 16-integer-blocks required to hold 'l' ints
var M = new Array(N);
for (var i=0; i<N; i++) {
M[i] = new Array(16);
for (var j=0; j<16; j++) { // encode 4 chars per integer, big-endian encoding
M[i][j] = (msg.charCodeAt(i*64+j*4)<<24) | (msg.charCodeAt(i*64+j*4+1)<<16) |
(msg.charCodeAt(i*64+j*4+2)<<8) | (msg.charCodeAt(i*64+j*4+3));
} // note running off the end of msg is ok 'cos bitwise ops on NaN return 0
}
// add length (in bits) into final pair of 32-bit integers (big-endian) [§5.1.1]
// note: most significant word would be (len-1)*8 >>> 32, but since JS converts
// bitwise-op args to 32 bits, we need to simulate this by arithmetic operators
M[N-1][14] = ((msg.length-1)*8) / Math.pow(2, 32); M[N-1][14] = Math.floor(M[N-1][14]);
M[N-1][15] = ((msg.length-1)*8) & 0xffffffff;
// HASH COMPUTATION [§6.1.2]
var W = new Array(64); var a, b, c, d, e, f, g, h;
for (var i=0; i<N; i++) {
// 1 - prepare message schedule 'W'
for (var t=0; t<16; t++) W[t] = M[i][t];
for (var t=16; t<64; t++) W[t] = (sha256.SmallSigma1(W[t-2]) + W[t-7] + sha256.SmallSigma0(W[t-15]) + W[t-16]) & 0xffffffff;
// 2 - initialise working variables a, b, c, d, e, f, g, h with previous hash value
a = H[0]; b = H[1]; c = H[2]; d = H[3]; e = H[4]; f = H[5]; g = H[6]; h = H[7];
// 3 - main loop (note 'addition modulo 2^32')
for (var t=0; t<64; t++) {
var T1 = h + sha256.BigSigma1(e) + sha256.Ch(e, f, g) + K[t] + W[t];
var T2 = sha256.BigSigma0(a) + sha256.Maj(a, b, c);
h = g;
g = f;
f = e;
e = (d + T1) & 0xffffffff;
d = c;
c = b;
b = a;
a = (T1 + T2) & 0xffffffff;
}
// 4 - compute the new intermediate hash value (note 'addition modulo 2^32')
H[0] = (H[0]+a) & 0xffffffff;
H[1] = (H[1]+b) & 0xffffffff;
H[2] = (H[2]+c) & 0xffffffff;
H[3] = (H[3]+d) & 0xffffffff;
H[4] = (H[4]+e) & 0xffffffff;
H[5] = (H[5]+f) & 0xffffffff;
H[6] = (H[6]+g) & 0xffffffff;
H[7] = (H[7]+h) & 0xffffffff;
}
return sha256.toHexStr(H[0]) + sha256.toHexStr(H[1]) + sha256.toHexStr(H[2]) + sha256.toHexStr(H[3]) +
sha256.toHexStr(H[4]) + sha256.toHexStr(H[5]) + sha256.toHexStr(H[6]) + sha256.toHexStr(H[7]);
};
sha256.ROTR = function(n, x) {
return (x >>> n) | (x << (32-n));
};
sha256.BigSigma0 = function(x) { return sha256.ROTR(2, x) ^ sha256.ROTR(13, x) ^ sha256.ROTR(22, x); };
sha256.BigSigma1 = function(x) { return sha256.ROTR(6, x) ^ sha256.ROTR(11, x) ^ sha256.ROTR(25, x); };
sha256.SmallSigma0 = function(x) { return sha256.ROTR(7, x) ^ sha256.ROTR(18, x) ^ (x>>>3); };
sha256.SmallSigma1 = function(x) { return sha256.ROTR(17, x) ^ sha256.ROTR(19, x) ^ (x>>>10); };
sha256.Ch = function(x, y, z) { return (x & y) ^ (~x & z); };
sha256.Maj = function(x, y, z) { return (x & y) ^ (x & z) ^ (y & z); };
sha256.toHexStr = function(n) {
// note can't use toString(16) as it is implementation-dependant,
// and in IE returns signed numbers when used on full words
var s="", v;
for (var i=7; i>=0; i--) { v = (n>>>(i*4)) & 0xf; s += v.toString(16); }
return s;
};
if (typeof String.prototype.utf8Encode == 'undefined') {
String.prototype.utf8Encode = function() {
return unescape( encodeURIComponent( this ) );
};
}
if (typeof String.prototype.utf8Decode == 'undefined') {
String.prototype.utf8Decode = function() {
try {
return decodeURIComponent( escape( this ) );
} catch (e) {
return this; // invalid UTF-8? return as-is
}
};
}
/* This is all that we need the sha256 code for... */
libravatar.url = function(username, s, d) {
if (s === undefined) s = 64;
if (d === undefined) d = 'retro';
var openid = 'http://' + username + '.id.fedoraproject.org/'
var hash = sha256.hash(openid);
return 'https://seccdn.libravatar.org/avatar/' + hash + '?s=' + s + '&d=' + d;
}